检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《工程科学学报》2017年第4期611-618,共8页Chinese Journal of Engineering
基 金:国家自然科学基金资助项目(51175266);国家高技术研究发展计划资助项目(6132490102)
摘 要:为实现弹药传输机械臂中不可测参数的辨识,建立了机械臂的虚拟样机,并将其作为样本数据的来源;考虑到样本数据的连续性和平滑特性,使用函数型数据分析和函数型主成分分析对样本数据进行了特征提取,并利用提取的特征参数和待辨识参数作为训练样本对极限学习机(ELM)进行了训练.为提高极限学习机的辨识精度和泛化能力,利用粒子群算法对极限学习机的输入层与隐含层的连接权值和隐含层节点的阈值进行了优化.最后,分别利用仿真数据与测试数据对此方法进行了验证,仿真数据的辨识结果表明,优化后的极限学习机具有更高的辨识精度和泛化能力;同时,通过对比将测试数据的辨识结果代入模型中进行仿真得到的支臂角速度与测试角速度,验证了此方法的可行性和有效性.To identify the unmeasurable parameters of a shell transfer arm,a virtual prototype of the shell transfer arm was built,and the built virtual prototype is regard as the source of the sample data. Considering the continuity and smoothness properties of the sample data,features of the curves were extracted by functional data analysis and functional principal component analysis,and the features and unknown parameters were used to train the extreme learning machine( ELM). At the meantime,the weight connecting the input layer and hidden layer and the threshold of the hidden nodes were optimized by particle swarm optimization( PSO) to improve the identification accuracy and generalization performance of ELM. At last,the presented method was verified by simulation data and test data. The identification results of the simulation data show that the optimized ELM has higher identification accuracy and better generalization performance. Also,the presented method is proved to be feasible and effective by comparing the real angular velocity and the angular velocity from the virtual prototype with respect to the test data identification results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28