检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《工程科学学报》2017年第4期619-625,共7页Chinese Journal of Engineering
基 金:北京市科技计划资助项目(Z121100003012016)
摘 要:针对人工鱼群算法(AFSA)存在收敛速度慢和寻优精度低等问题,本文提出了一种改进人工鱼群算法(IAFSA).该算法中的人工鱼能够根据鱼群当前状态调整自身的视野和步长来平衡局部搜索和全局搜索.此外,算法中还加入了引导行为,即人工鱼在觅食行为未发现更优的位置时,当前人工鱼向最优人工鱼移动一步.仿真结果表明,改进人工鱼群算法在收敛速度、寻优精度和克服局部极值等方面有很大优势.本文将改进鱼群算法应用时滞系统的辨识中,辨识结果表明改进算法能获取被控对象的精准数学模型,并具有较强的抗干扰能力.To remedy the low convergence rate and low optimization accuracy of the artificial fish swarm algorithm( AFSA),an improved artificial fish swarm algorithm( IAFSA) was proposed. In the improved algorithm,the artificial fish could adjust the vision and step and form a balance between the local search and global search by identifying the actual condition. Furthermore,when the artificial fish in the foraging behavior does not find a better position than the current location,it steps forward to the optimal artificial fish by introducing the guide behavior to improved algorithm. The results indicate that the improved algorithm has advantages such as convergence rate,optimization accuracy,and anti local extremum value. The improved algorithm was applied to the system identification with the time-delay model. This algorithm can obtain a precise mathematical model of the controlled object and acquire great identification accuracy in the case of external interference.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249