不确定分数阶时滞混沌系统自适应神经网络同步控制  被引量:13

Synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive neural network control

在线阅读下载全文

作  者:林飞飞[1] 曾喆昭[1] 

机构地区:[1]长沙理工大学电气与信息工程学院,长沙410076

出  处:《物理学报》2017年第9期33-42,共10页Acta Physica Sinica

基  金:国家自然科学基金(批准号:61040049);电子科学与技术湖南省重点学科;智能电网运行与控制湖南省重点实验室项目资助的课题~~

摘  要:针对带有完全未知的非线性不确定项和外界扰动的异结构分数阶时滞混沌系统的同步问题,基于Lyapunov稳定性理论,设计了自适应径向基函数(radial basis function,RBF)神经网络控制器以及整数阶的参数自适应律.该控制器结合了RBF神经网络和自适应控制技术,RBF神经网络用来逼近未知非线性函数,自适应律用于调整控制器中相应的参数.构造平方Lyapunov函数进行稳定性分析,基于Barbalat引理证明了同步误差渐近趋于零.数值仿真结果表明了该控制器的有效性.Time delay frequently appears in many phenomena of real life and the presence of time delay in a chaotic system leads to its complexity. It is of great practical significance to study the synchronization control of fractional-order chaotic systems with time delay. This is because it is closer to the real life and its dynamical behavior is more complex. However, the chaotic system is usually uncertain or unknown, and may also be affected by external disturbances, which cannot make the ideal model accurately describe the actual system. Moreover, in most of existing researches, they are difficult to realize the synchronization control of fractional-order time delay chaotic systems with unknown terms. In this paper, for the synchronization problems of the different structural fractional-order time delay chaotic systems with completely unknown nonlinear uncertain terms and external disturbances, based on Lyapunov stability theory, an adaptive radial basis function (RBF) neural network controller, which is accompanied by integer-order adaptive laws of parameters, is established. The controller combines RBF neural network and adaptive control technology, the RBF neural network is employed to approximate the unknown nonlinear functions~ and the adaptive laws are used to adjust corresponding parameters of the controller. The system stability is analyzed by constructing a quadratic Lyapunov function. This method not only avoids the fractional derivative of the quadratic Lyapunov function, but also ensures that the adaptive laws are integer-order. Based on Barbalat lemma, it is proved that the synchronization error tends to zero asymptotically. In the numerical simulation, the uncertain fractional-order Liu chaotic system with time delay is chosen as the driving system, and the uncertain fractional-order Chen chaotic system with time delay is used as the response system. The simulation results show that the controller can realize the synchronization control of the different structural fractional-order chaotic systems w

关 键 词:分数阶时滞混沌系统 Barbalat引理 自适应RBF神经网络控制 

分 类 号:O415.5[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象