检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:武小军[1] 孟苏芳 WU Xiaojun MENG Sufang(School of Economics and Management, Tongji University, Shanghai 200092, Chin)
出 处:《工业工程》2017年第2期99-107,共9页Industrial Engineering Journal
摘 要:为了准确识别高价值电子商务客户,提高对非流失客户的预测精度,本文首先对电子商务客户进行Kmediods聚类细分识别出高价值客户,再应用过采样和欠采样相结合的改进SMOTE处理不平衡的电子商务客户数据,最后用Ada Boost算法进行预测。实证研究表明,与成熟的客户流失预测算法BP神经网络、支持向量机(SVM)和改进支持向量机(CW-SVM)相比,该方法能更好地提高预测效果,与未细分前预测效果对比,客户细分后预测效果更好。In order to identify the high value customers as well as improve the prediction accuracy of non-churn customers, the high value customer groups are identified by K-mediods clustering and the churn data processed with improved SMOTE (synthetic minority oversampling teachnique), which combines oversampling and undersampling methods to balance the datasets and generates the certain size of positive and negative samples by setting sampling ratio and controlling the model training time, then AdaBoost algorithm is employed to predict. At last, an empirical study on B2C E-commerce platform shows that the integrated model has better efficiency and higher prediction precision compared with the mature customer churn prediction algorithms, such as BP Neural, SVM (support vector machine) and CW-SVM (class weighted support vector machine). Meanwhile, the prediction model of e-commerce customer churning based on customer segmentation has been proved to have better prediction performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3