检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]风力发电系统国家重点实验室,浙江杭州310012 [2]浙江运达风电股份有限公司,浙江杭州310012
出 处:《机电工程》2017年第5期533-537,共5页Journal of Mechanical & Electrical Engineering
基 金:国家科技支撑计划项目(2015BAA06B01)
摘 要:针对当前风电机组解缆控制存在的问题,首先对目标风电场的解缆情况进行了统计分析,指出优化解缆控制方案的必要性;然后提出了基于PSO-LSSVM模型的超短期风速预测方法,实现了对未来30 min内平均风速的预测;最后提出了基于超短期风速预测的风电机组自动解缆优化方案,并对目标风电场的解缆控制方案进行了优化升级。测试结果表明PSO-LSSVM模型与LSSVM模型相比具有更高的预测精度,能够满足解缆控制的要求;优化后的解缆控制方案有效降低了因解缆造成的电量损失,具有良好的工程应用价值。Aiming at existing problems on the wind turbine unwind control system, firstly the unwind control performance of the target wind farms was analyzed and the necessity of the research on unwind control scheme was put out. Then a uhra-short-term wind speed forecasting method based on PSO-LSSVM model was proposed, the average wind speed in the future 30 minute was forecasted using a PSO-LSSVM model. At last a unwind control optimization scheme based on the forecasting wind speed was proposed, and the unwind control schemes in the target wind farms were optimized. The results indicate that the experimental result shows that the PSO-LSSVM model has a higher prediction accuracy than the LSSVM model, the proposed scheme can reduce the power loss causing by unwind and has good engineering application value.
关 键 词:风电机组 解缆 超短期风速预测 PSO LSSVM
分 类 号:TM315[电气工程—电机] TK83[动力工程及工程热物理—流体机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62