基于扰动搜索属性约简的装备故障诊断研究  被引量:2

Research on Equipment Fault Diagnosis Based on an Disturbance Search Attribute Reduction

在线阅读下载全文

作  者:郑铌 张琳[1] 汪文峰[1] 赵宇[1] 张昭建[1] 陈永革[1] 

机构地区:[1]空军工程大学防空反导学院,西安710051

出  处:《弹箭与制导学报》2017年第1期157-160,共4页Journal of Projectiles,Rockets,Missiles and Guidance

基  金:国家自然科学基金(61473163);陕西省自然基金(2014JM2-6110)资助

摘  要:为提高装备故障诊断效率,提出了一种新的粗糙集属性约简方法。首先将属性约简问题转化为集合覆盖问题,在相关矩阵的基础上构建相关系数矩阵;然后基于优质特征集选取原则,引入随机变异机制,设计扰动搜索算法,求出属性约简结果;最后,用UCI数据集和某型复杂装备电源系统进行验证。仿真结果表明,在满足分类精度要求的基础上,有效剔除了冗余属性,缩短了故障诊断时间。A new attribute reduction method of rough set was proposed to improve the efficiency of fault diagnosis. First, the attribute reduction problem was transformed into the set covering problem and the correlation coefficient matrix was built based on the correlation matrix. Then based on the selection principle of high quality feature set, the random mutation mechanism was introduced, and the disturbance searching algorithm was designed and the result of attribute reduction was obtained. At last, the UCI data set and the power system of one complex equipment were used to validate the algorithm. The simulation results indicated that the redundancy attribute was eliminated effectively and the fault diagnosis time was shortened on the basis of meeting the requirements of the classification accuracy.

关 键 词:属性约简 集合覆盖 故障诊断 电源系统 

分 类 号:E919[军事]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象