检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑玉军[1] 田康生[1] 张金林[1] 刘俊凯[1]
机构地区:[1]空军预警学院,湖北武汉430019
出 处:《计算机仿真》2017年第5期322-326,共5页Computer Simulation
基 金:2014年度全军军事类研究生资助课题(2014JY548);国家自然科学基金编号(61302193)
摘 要:针对效能函数中目标优先级分配不合理从而导致传感器资源分配效率不高的问题,采用模糊控制和神经网络方法来解决线性加权求和方法在目标参数量化和优先级分配中的困难,提出了自适应多传感器资源管理方法,利用神经网络自主学习的能力和模糊控制在处理不确定信息方面的能力提高传感器资源分配效率。仿真结果表明,改进方法可以根据不同目标自适应分配有限的传感器资源,相比传统传感器管理方法更加高效。Aiming at the problem of sensor resource' s low allocation efficiency resulted by unreasonable allocation of the target' s priority in efficacy function, the fuzzy control and neural network (NN) are introduced to solve the problem that it is difficult to apply the linear weighted sum method in quantifying the target parameter and allocating the priority, and a self-adaptive management method of multi-sensor resource based on efficacy function is proposed. The sensor resource allocation efficiency was promoted by using autonomous learning ability of the neural network and fuzzy theory's ability to handle uncertain information. The simulation results show that the method proposed in this article can allocate the limited sensor resource self adaptively according to different targets, resulting in a more effi- cient approach compared with the traditional sensor management method.
分 类 号:TN958.92[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49