检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓洋波[1,2] 余坤勇[1,2] 俞欣妍[1,2] 项佳[1,2] 张佳奇[1,2] 刘健[1,2,3]
机构地区:[1]福建农林大学林学院,福建福州350002 [2]3S技术与资源环境优化利用福建省高校重点实验室,福建福州350002 [3]三明学院,福建三明365000
出 处:《西北林学院学报》2017年第3期191-197,共7页Journal of Northwest Forestry University
基 金:福建省高校产学研合作项目(2015N5010);国家林业局林业科技成果国家级推广项目([2015]13号)
摘 要:以黑松、马尾松、荔枝、相思树为对象,采用地基激光雷达获取点云数据,基于点云体素化理论,分割叶片点云,建立"叶片—体素"的投影关系,研究体素化理论中尺度因子与点云密度对叶面积指数(LAI)反演精度的影响,实现单木LAI的高精度获取。结果表明,样木反演的LAI随着尺度因子的增大而增大,最优尺度区间为1.2~1.3,样木LAI最优反演精度范围为93.3%~99.9%,决定系数R^2为0.989 3,反演结果与实测LAI具有较高相关性;在最优尺度区间下,样木LAI反演精度随着点云密度的降低而减小,最大精度为98.63%,最小精度为84.14%,点云密度对单木LAI反演精度影响不大。Terrestrial laser scanning was used to obtain point cloud of Pinus thunbergii,P.massoniana,Litchi chinensis and Acacia confusa,and blade point cloud segmentation to establish a “blade-voxel” projection relationship.The influences of the scale factor and point cloud density on LAI inversion accuracy were examined by using point cloud voxel voxelization,to simulate LAI of individual tree precisely.The results showed that the LAI inversion of sample wood increased with the increase of scale factor,where the optimal scale ranged from 1.2 to 1.3.The optimal LAI inversion accuracy of three tree species ranged from 93.3% to 99.9% and determination coefficient (R2) was 0.989 3,which exhibited relatively high correlation of LAI inversion results and the measured.Based on the optimal scale range,LAI inversion accuracy of sample wood decreased with the loss of the point cloud density,in which maximum precision was 98.63%,the minimum accuracy was 84.14%,and point cloud density did not affect LAI simulation of individual tree.
分 类 号:S758.4[农业科学—森林经理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30