检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电气自动化》2017年第3期4-5,15,共3页Electrical Automation
摘 要:提出了一种用人工神经网络实现直流电机故障诊的方法。推导了故障诊断所需的特征参量。在特征参量的基础上改变了传统的电机故障分类方法,将电机故障分为电枢故障、励磁故障、换向器故障和机械故障4类。以MATLAB仿真数据为基础,训练了一个可行的神经网络。测试结果表明,对电机故障诊断的正确率较高,可行性较强,建立的故障诊断模型有效地实现了特征参量提取和故障映射的功能。This paper presents a method of fault diagnosis which uses artificial neural network ( ANN ) to realize fault diagnosis for DC motors. Characteristic parameters needed for fault diagnosis are derived. On that basis, the traditional motor fault classification method is changed, namely, motor faults are divided into 4 types: armature fault, excitation fault, commutator fault and mechanical fault. Based on MATLAB simulation data, a feasible neural network is trained. The test result shows that this approach has high accuracy and feasibility for motor fault diagnosis. The fault diagnosis model established can effectively realize extraction of characteristic parameters and fault mapping.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7