互相关与最小二乘加权目标函数全波形反演  被引量:3

Full waveform inversion based on weighted cross-correlation and least squares objective function

在线阅读下载全文

作  者:梁煌[1] 韩立国[1] 许卓[1] 胡勇[1] 邹佳儒 LIANG Huang HAN Li-guo XU Zhuo HU Yong ZOU Jia-ru(College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China)

机构地区:[1]吉林大学地球探测科学与技术学院,长春130026

出  处:《世界地质》2017年第2期588-594,共7页World Geology

基  金:国家自然科学基金项目(41304086);国家高技术研究发展规划(863计划)重大课题项目联合资助

摘  要:全波形反演是一个高度非线性的优化问题,当地震数据中缺少低频成分而初始速度与真实速度相差较远时,反演容易陷入局部极小值。笔者提出一种新的目标函数,将模拟地震记录和观测记录的归一化互相关与最小二乘结合。互相关侧重相位匹配,具有更强的线性,能减弱"跳周"现象。通过设置权重因子,在反演前期利用互相关先恢复低波数的背景速度模型,再加入最小二乘约束恢复高波数的模型细节。数值模拟试验结果表明,基于该目标函数的全波形反演不依赖精确的初始模型和低频信息,向全局极小值迅速收敛,能有效改善反演的稳定性,并获得比基于常规目标函数的全波形反演更精确的结果。Full waveform inversion (FWI) is a highly non-linear optimization problem. When there is a lack of low-frequency components in the seismic data and the initial velocity is far from the true velocity, it is easily trapped into local minima. The authors propose a new objective function that combines the normalized cross-correla-tion of modeled and observed data with the least squares criterion. Cross-correlation emphasizes on phase matching and behaves in a more linear way, thus can mitigate the cycle-skipping issue. By setting a weighting factor, the au-thors use the cross-correlation norm to update the low-wave number components of the velocity model at the early stage of the inversion, while using the least squares criterion to update high-wave number details of the model. Nu-merical examples show that FWI based on the new objective function converges quickly toward global minima and does not rely on accurate initial velocity model as well as low-frequency information, it can improve the robustness of the inversion and generate more accurate inversion results than the conventional approach.

关 键 词:全波形反演 互相关 最小二乘 

分 类 号:P631.443[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象