基于双次归一化算法的连铸坯表面纵裂纹BP神经网络  被引量:3

BP Neural Network of Longitudinal Crack on Continuous Casting Slab's Surface Based on Double Normalization Algorithm

在线阅读下载全文

作  者:班泽宇 米进周[3] 彭世恒[3] 施哲[1] 

机构地区:[1]昆明理工大学冶金与能源学院,云南昆明650093 [2]钢铁研究总院国家连铸技术中心,北京100081 [3]中国重型机械研究院股份公司,陕西西安710032

出  处:《热加工工艺》2017年第11期78-80,84,共4页Hot Working Technology

摘  要:通过对板坯表面纵裂纹的机理研究,确定板坯表面纵裂纹的主要影响因素。用这些影响因素作为输入量,对某钢厂现场样本数据进行了采集、归一化处理,确定BP神经网络算法的学习速率、隐藏层神经元个数。以归一化数据作为训练样本,进行训练和仿真,使神经网络提高了命中率。d_(sin)函数是根据相关冶金原理提出的一种非线性函数,d_(sin)+Premnmx双次归一化算法使神经网络准确率明显提高。The main factors which influence the longitudinal crack on slab's surfaee were identified by the study of longitudinal crack causes on continuous casting slab's surface. With these factors as the network input, the samples' data of a steel plant were collected and normalized, the learning rate of BP neural network algorithm and the number of hidden layer neurons were determined. With normalized data as the training samples for training and simulation, the hit rate of neural network was improved. The d~, function is a nonlinear function which is proposed according to the metallurgical principle, and the accuracy of the neural network improves obviously with the dsin+Premnmx double normalization algorithm.

关 键 词:连铸坯 纵裂纹 BP神经网络 dsin函数 Premnmx函数 

分 类 号:TG247[金属学及工艺—铸造] TG249.7

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象