基于改进蚁群算法的物流配送车辆路径优化  被引量:3

Vehicle Routing Optimization in Logistics Distribution Based on Improved Ant Colony Algorithm

在线阅读下载全文

作  者:胡立栓[1] 王育平[1] 亓呈明[1] Hu Lishuan Wang Yuping Qi Chengming(Beijing Union Universit)

机构地区:[1]北京联合大学城市轨道交通与物流学院

出  处:《智能建筑》2017年第6期60-62,80,共4页Intelligent Building

基  金:基金项目"2016年中国物流学会;中国物流与采购联合会研究课题计划";项目编号:2016CSLKT3-173

摘  要:车辆路径问题是物流系统优化中的关键内容之一,是现代物流管理研究中的重要内容。为了克服基本蚁群算法搜索时间过长、易陷于局部最优等缺点,提出了一种改进的蚁群算法——IACA,在算法中引入迭代局部搜索算法,该算法能保持解的多样性,跳出局部最优,增强全局搜索的能力。实验在VRP基准测试集上进行,并与基本蚁群算法进行对比分析,验证了改进蚁群算法的有效性和可行性。The Vehicle Routing Problem (VRP) is an important management problem in the field of physical distribution and logistics. Good vehicle routing can not only increase the profit of logistics but also make logistics management more scientific. The Capacitated Vehicle Routing Problem (CVRP) constrained by the capacity of a vehicle is the extension of VRP. In order to solve costly procedure of search and premature convergence for VRP, Iterative Local Search (ILS) method is employed to seeking the close-to-optimal solution in local scope based on the capacity of the vehicle. It can enhance the ability of global search by increasing diversity of solutions. Experimental results on benchmark problems show that our algorithm is superior to original ant colony algorithm and can efficiently find better solutions.

关 键 词:蚁群算法 迭代局部搜索 车辆路径优化 

分 类 号:F252[经济管理—国民经济] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象