检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王佐成[1,2] 杨娟[3] 薛丽霞[3] WANG Zuocheng YANG Juan XUE Lixia(The 38th Research Institute of China Electronics Technology Group Corporation,HeFei,230088 ,P. R. China AnHui Sun Create Electronic CO. , LTD. HeFei, 230088,P. R. China School of Computer and Information, Hefei University of Technology, Hefei 230009 , P. R. China)
机构地区:[1]中国电子科技集团公司第三十八研究所,合肥230088 [2]安徽四创电子股份有限公司,合肥230088 [3]合肥工业大学计算机与信息学院,合肥230009
出 处:《重庆邮电大学学报(自然科学版)》2017年第3期371-376,共6页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:The Fundamental Research Funds for the Central Universities of China(JZ2014HGBZ0059)
摘 要:视频图像的高效无损压缩在海量的航空和遥感图像传输、珍贵的文物信息的保存等方面具有重要的应用价值,而目前的研究热点主要针对有损压缩,为此通过对现有的无损压缩方法的分析和研究,提出一种在稀疏编码与二进神经网络相结合的框架下建立新的图像无损压缩方法。首先借助二进神经网络中的线性可分结构系建立冗余字典,获得有效的稀疏分解基;再借助二进神经网络学习算法将图像映射为以线性可分结构系为神经元的二进制神经网络,在此基础上建立相应的模式匹配算法将每个神经元与冗余字典简历映射关系,通过稀疏系数建立原始图像的编码形式,进而实现了图像的无损压缩,并从理论上分析了该方法可以有效地提高压缩比,最后通过实验验证了该算法的有效性和通用性。The high efficient lossless compression of videos and images has important application value in the transmission of massive aerial and remote sensing image, the storage of precious cultural relics, and so on. However, the current resear-ches mainly focus on lossy compression. So,according to the analysis and research of the existing lossless compression methods, a new method for lossless image compression based on the combination of sparse coding and binary neural net-works is proposed. Firstly, a redundant dictionaiy is constructed by using the linear separable structure of the binaiy neural networks to obtain efficient sparse decomposition. Then the binaiy neural network learning algorithm is used to map the im-age into a binary neural network with linear separable structure. Based on this, the corresponding pattern matching algo-rithm is constructed to map each neuron to the redundant dictionaiy resume. Also the coding of the original image is estab-lished by the sparse coefficients. Finally, the lossless compression of the image is realized. The theoretical analysis shows that this method can effectively improve the compression ratio. Experiments verify the validity and generality of the algo-rithm.
关 键 词:无损压缩 二进神经网络 线性可分结构系 冗余字典 压缩比
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.222.110