检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]曲靖师范学院化学与环境科学学院,曲靖655011
出 处:《理化检验(化学分册)》2017年第6期636-640,共5页Physical Testing and Chemical Analysis(Part B:Chemical Analysis)
基 金:云南省教育厅一般项目(2012Y414);曲靖师范学院招标项目(2011ZB006)
摘 要:将竞争自适应重加权采样(CARS)与区间偏最小二乘回归(iPLS)相结合的变量筛选建模方法 CARSiPLS,用于烟煤中水分与挥发分的近红外光谱测定。以CARS逐步筛选出每个区间与待测量相关的变量,建立烟煤中水分与挥发分近红外光谱测定的偏最小二乘回归模型。结果表明:与PLS、iPLS相比,CARSiPLS可以显著减少变量数,同时提高模型预测性能;挥发分建模变量从1557个减少至15个,水分建模变量从1557个减少至317个;挥发分、水分的预测平均绝对百分误差分别从0.031 5降至0.018 4、从0.188 4降至0.094 6;挥发分、水分的预测均方差分别从0.010 8降至0.006 7、从0.005 0降至0.002 8。A improved modeling method for selection of variables, i. e. , CARSiPLS was proposed by combining the methods of competitive adaptive reweighted sampling (CARS) and internal partial least square regression (iPLS) and applied to the modelling in NIRS determination of moisture and volatiles in bitumite. PLS regression models for NIRS determination of moisture and volatiles in bitumite were established by stepwise selection of those variables related to the measurements from each interval by CARS. It was shown that as compared with PLS and iPLS, the number of variables was significantly reduced in CARSiPLS and the prediction performances of the models were also improved. In establishment of the models for moisture and volatiles, the number of variables was reduced from 1557 to 317 and 15 respectively. Values of MAPE and RMSEP were reduced remarkably from 0. 031 5 to 0. 018 4 and from 0. 010 8 to 0. 006 7 for volatile determinations, and from 0. 188 4 to 0. 094 6 and from 0. 005 0 to 0. 002 8 for moisture determinations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13