检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京工程学院能源与动力工程学院,江苏南京211167
出 处:《南京工程学院学报(自然科学版)》2017年第2期67-71,共5页Journal of Nanjing Institute of Technology(Natural Science Edition)
基 金:南京工程学院科研基金(CKJB201207)
摘 要:影响碟式太阳能集热器出口温度的因素较多,采用传统数学方法模拟较为复杂.利用RBF神经网络建立碟式太阳能集热器出口温度预测模型,为提高RBF的预测精度和学习效率,采用最近邻聚类算法选取基函数的中心,应用实际数据进行网络训练,网络预测结果较为准确.将本算法与传统的RBF神经网络进行仿真预测对比,本算法的结果和算法学习效率都要好于传统的RBF神经网络,验证了该算法的可行性和有效性.It is not easy to use traditional mathematical method for simulation in that there are many factors affecting the temperature of disc-solar collectors. This paper, therefore, proposes a model for predicting the temperature of dish-solar collectors by using RBF neural network. In order to improve the prediction accuracy of RBF, this paper uses the nearest neighbor-clustering algorithm to select the basis function center. Finally, actual data are selected for training the network and the result is accurate. The comparison between simulation prediction from this algorithm and that from traditional RBF neural network shows that the results and efficiency from the former are better than those from the latter. This algorithm is thus proved to be feasible and effective.
分 类 号:TK519[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.239.11