检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2017年第A01期187-189,共3页journal of Computer Applications
基 金:国家自然科学基金资助项目(61174025);四川省科技计划项目(2014FZ0084)
摘 要:针对公路上交通压力越来越大、汽车管理的效率越来越低的问题,提出了一种对汽车车牌进行智能数字识别的方法。该方法利用离散型Hopfield神经网络(DHNN)的联想记忆功能,首先,将具有完整信息的数字点阵输入到离散型Hopfield神经网络中,对网络进行训练;其次,用旋转、遮挡和施加高斯白噪声来模拟现实中汽车车牌在识别过程中所遇到的干扰;最后,将这些受到干扰影响而残缺不全的信息输入到神经网络中,让网络进行联想记忆。这三种数字识别的仿真结果表明,离散型Hopfield神经网络可以很好地将信息还原,并且收敛速度很快。Focused on the increasing traffic pressure on the highway, and the decling efficiency of car management, an intelligent figure recognition method of car license plate was proposed by using the associative memory function of Discrete Hopfield Neural Network( DHNN). Firstly, the figure lattice with complete information was input into the DHNN, and the network was trained; secondly, the interference encountered in the process of identifying the real car license plate was simulated by using rotation, covering and Gaussian white noise; finally, the incomplete information affected by interference was input into the neural network, and it was associated and memorized by the network. Simulation results of these three figure identifications show that DHNN can restore information very well, in addition, convergence speed of DHNN is very fast.
关 键 词:数字识别 HOPFIELD神经网络 高斯白噪声 联想记忆 信息还原
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229