基于人脸识别的影视剧镜头自动标注及重剪系统  

Automatic annotation for film and Television drama shots and recut system based on face identification

在线阅读下载全文

作  者:郎玥[1] 周霁婷[1] 梁小龙 张文俊[1] 

机构地区:[1]上海大学上海电影学院,上海200072 [2]腾讯公司优图项目组,上海200030

出  处:《上海大学学报(自然科学版)》2017年第3期353-363,共11页Journal of Shanghai University:Natural Science Edition

基  金:国家自然科学基金资助项目(61303093);上海市教委科研创新基金资助项目(14YZ023)

摘  要:利用基于深度学习的人脸识别技术,建立了一种基于人脸识别的影视剧镜头自动标注及重剪系统,用于实现影视剧重编辑过程中对镜头片段更好地管理、查找和重剪.先对输入的影视剧视频进行镜头检测和分割,获得并建立分镜参数.在此基础上,对镜头中出现的所有人脸进行检测和切割,并采用预先训练好的包含350多位明星特征的模型库予以身份识别,聚类后实现镜头的演员标注.该系统也可依据指定演员对影视剧进行搜索,并将其中所有包含该演员的片段自动重剪在一起.实验结果表明,该系统镜头分割模块的平均召回率达到95%以上,对45?以内的人脸识别率达到92.45%,且具有良好的鲁棒性.This paper proposes an automatic editing system named Star Cut based on face recognition using deep learning and a video shot detection technique. The purpose is to establish a system for management, retrieval, and automatic recut of film and TV shots. First, the system with over 350 faces of pop stars and actors using a U-face model is trained to learn facial features. The system uses the change rate of edges to detect shot edge. After shot segmentation, the system uses the pre-trained face models to identify faces in the input film or TV drama shot by shot. Users can either choose to recognize all figures in these shots or just choose selected one to recut all the shots containing him/her together automatically. The recall rate of shot segmentation is above 95%, and the recognition rate of faces in an shooting angle of 45° is 92.45%. Test results show that the proposed system has good robustness.

关 键 词:人脸检测 人脸识别 镜头分割 深度学习 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象