检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西华师范大学数学与信息学院,四川南充637009
出 处:《计算机应用》2017年第7期2014-2018,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(11401480);西华师范大学校级创新团队项目(CXTD2014-4);西华师范大学大学生创新创业项目(CXCY2016004);四川省科技创新苗子培育项目(2016033);四川省大学生创新创业项目(201710638022)~~
摘 要:车牌字符识别是智能车牌识别系统中的重要组成部分。针对车牌字符类别多、背景复杂影响正确识别率的问题,提出了一种基于卷积神经网络(CNN)的车牌字符识别方法。首先对车牌字符图像进行大小归一化、去噪、二值化、细化、字符区域居中等预处理,去除复杂背景,得到简单的字符形状结构;然后,利用所提出的CNN模型对预处理后的车牌字符集进行训练、识别。实验结果表明,所提方法能够达到99.96%的正确识别率,优于其他三种对比方法。说明所提出的CNN方法对车牌字符具有很好的识别性能,能满足实际应用需求。Character recognition of license plate is an important component of an intelligent license plate recognition system. Both the number of categories and the complexity of background of license plate character affected the correct recognition rate. A character recognition method of license plate based on Convolution Neural Network (CNN) was proposed for improving the correct recognition rate. Firstly, the simple shape structures of license plate characters were obtained through image preprocessing which included image size normalization, image denoising, image binarization, image thinning, and character centering. Secondly, the preprocessed character images were trained and recognized by the proposed CNN model. The experimental results show that the correct recognition rate of the proposed method can reach 99.96%, which is better than the other three compared methods. It is demonstrated that the proposed CNN method has good recognition performance for the license plate character, and can meet the practical application requirements.
关 键 词:深度学习 车牌字符识别 卷积神经网络 智能交通 图像预处理
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.413[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3