检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]杭州市水文水资源监测总站,浙江杭州310016 [2]杭州电子科技大学生命信息与仪器工程学院,浙江杭州310018
出 处:《水力发电》2017年第7期17-21,共5页Water Power
基 金:浙江省自然科学基金资助项目(LQ16E080009);浙江省教育厅一般科研资助项目(GK14080127043);国家自然科学基金资助项目(61374005)
摘 要:针对在钱塘江潮时预报中经验模型和传统神经网络的可靠性不足的问题,提出一种基于支持向量机的钱塘江涌潮到达时间预报方法。通过历史数据了解并分析钱塘江涌潮的周期性以及各涌潮周期间的相关性,取预报日期前后一个月的数据作为一个预报模型,以预测日期前一个月以及近5年内同一月份的隔日时间差数据作为训练样本,利用支持向量机预测未来涌潮到达时间。最后,通过对钱塘江沿岸多个水文站2015年农历八月初一至八月二十一的隔日时间差实例预测,验证了方法的有效性。Due to the lack of reliability of empirical model and traditional neural network model commonly used in the prediction of occurrence-time of Qiantang River's tidal bores, a new method based on Support Vector Machine is introduced to forecast the tidal bore occurrence-time. Based on historical data, the periodicity of tidal bores and the correlation between each tidal cycle are firstly analyzed, and then according to forecast date, the data at one month interval are selected to build the forecasting model, and the every-other day difference data of one-month before the forecast date and the corresponding same month of recent five years are used as training sample. Finally, the occurrence-time of tidal bore is predicted by Support Vector Machine. An experimental example on the tidal bore occurrence-time prediction at four tide observation stations on Qiantang River is presented to demonstrate the effectiveness of proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

