Multi-symplectic Geometry and Preissmann Scheme for GSDBM Equation  

Multi-symplectic Geometry and Preissmann Scheme for GSDBM Equation

在线阅读下载全文

作  者:WANG Jun-jie LI Sheng-ping 

机构地区:[1]Department of Mathematics, Pu'er University, Pu'er 665000, China [2]Department of Mathematics,Northwest University, Xi' an 710127, China

出  处:《Chinese Quarterly Journal of Mathematics》2017年第2期172-180,共9页数学季刊(英文版)

基  金:Supported by the Differential Equation Innovation Team(CXTD003,2013XYZ19)

摘  要:The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is exemplified by the multisymplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme.The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is exemplified by the multisymplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme.

关 键 词:Dodd-Bullough-Mikhailov equation multi-symplectic theory Hamilton space Preissmann scheme local conservation laws 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象