基于OSPA距离和特征点采样的路标识别算法  被引量:4

A Recognition Algorithm for Road Signs Based on the OSPA Metric and Characteristic Point Sampling

在线阅读下载全文

作  者:陈利[1] 刘伟峰[1] 杨爱兰[1] 

机构地区:[1]杭州电子科技大学

出  处:《哈尔滨师范大学自然科学学报》2017年第2期55-57,共3页Natural Science Journal of Harbin Normal University

基  金:浙江省自然科学基金资助项目(LY15F030020);杭州电子科技大学2016年高等教育研究资助项目资助."本科生实验室科研创新研究与实践"(YB201662)

摘  要:提出了一种基于最优次模式(OSPA)距离的路标识别算法.算法引入Markov随机场建立噪声的待检图像,然后采用条件迭代算法(ICM)恢复图像,进一步提取路标边缘点.这些边缘点作为特征点;该特征点看作为待检特征点集,计算其和标准路标库图像之间的OSPA的距离,以此来识别待检路标.分析表明,该算法对于路标的形态识别具有明显的优势,最后分析了图像尺寸大小、特征点数量对OSPA距离的影响.In this paper, a recognition algorithm for road signs based on the optimal sub -pattern assignment (OSPA) metric is proposed. The noisy road sign picture is gained by using Markov random fields. The true picture is then recovered by using iterative condition method (ICM). Based on the recovered picture, the marginal points are derived and seen as pending characteristic points. Then, the OSPA metric is proposed to evaluate the distance between standard characteristic points and pending characteristic points. The standard one which has the smallest OSPA distance is judged to be the correct class. The final results show that proposed algorithm gives a'better recognition. Finally, the influence of picture size, the number of characteristic points on OSPA is analyzed.

关 键 词:OSPA距离 马尔科夫随机场 路标图像 边缘点 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象