检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北经贸大学数学与统计学学院,河北石家庄050061 [2]河北农业大学理学院,河北保定071001
出 处:《应用数学》2017年第3期665-676,共12页Mathematica Applicata
基 金:Supported by the National Natural Science Foundation of China(11071053);Natural Science Foundation of Hebei Province(A2014207010);Key Project of Science and Research of Hebei Educational Department(ZD2016024);Key Project of Science and Research of Hebei University of Economics and Business(2016KYZ07);the third author is supported by Science and Technology Foundation of Agricultural University of Hebei(LG201612)
摘 要:在实一致凸且q一致光滑Banach空间中,构造无穷个m增生映射和μ_i逆强增生映射和的公共零点的半隐式迭代算法.证明ergodic收敛性.与近期研究成果相比,限定条件更弱.此外,还研究了一类curvature系统并证明其解恰好是无穷个m增生映射和μ_i逆强增生映射和的公共零点,进而验证了迭代算法的有效性.A semi-implicit iterative algorithm is constructed for the common zeros of the sum of infinite m-accretive mappings and infinite μi-inversely strongly accretive mappings in a real uniformly convex and q-uniformly smooth Banach space. The ergodic convergence is proved under weaker restrictions compared to some of the recent corresponding works. A kind of curvature system is studied in order to show that its solution is just the common zeros of the sum of infinite m-accretive mappings and infinite μi-inversely strongly accretive mappings, which further shows the validity of the iterative algorithm.
关 键 词:m-增生映射 μi逆强增生映射 压缩映射 Ergodic收敛 Curvature系统
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15