检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Carlos Eduardo de Araújo Padilha Sérgio Dantas de Oliveira Júnior Domingos Fabiano de Santana Souza Jackson Araújo de Oliveira Gorete Ribeiro de Macedo Everaldo Silvino dos Santos
出 处:《Chinese Journal of Chemical Engineering》2017年第5期652-657,共6页中国化学工程学报(英文版)
基 金:CAPES and Brazilian National Council of Research (CNPq) (Grant 407684/2013-1) for the financial support
摘 要:A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG(1500–6000 Da), p H(4.0–7.0), percentage of PEG(10.0–20.0 w/w), percentage of MgSO_4(8.0–16.0 w/w), percentage of the cell homogenate(10.0–20.0 w/w) and the percentage of MnSO_4(0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting(AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules.A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG(1500–6000 Da), p H(4.0–7.0), percentage of PEG(10.0–20.0 w/w), percentage of MgSO4(8.0–16.0 w/w), percentage of the cell homogenate(10.0–20.0 w/w) and the percentage of MnSO4(0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting(AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules.
关 键 词:Partitioning Invertase Aqueous Two Phase System GMDH Neural network
分 类 号:TQ925[轻工技术与工程—发酵工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143