检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宏超[1] 郭志强[1] 向国权[1] 巩晓赟[1] 杜文辽[1]
机构地区:[1]郑州轻工业学院机电工程学院,郑州450002
出 处:《航空动力学报》2017年第5期1266-1272,共7页Journal of Aerospace Power
基 金:国家青年自然科学基金(51405453;51205371);郑州轻工业学院博士科研基金
摘 要:将小波相邻系数降噪与时频小波切片变换(FSWT)相结合用于滚动轴承的早期微弱故障时频特征提取,通过对滚动轴承加速疲劳试验早期微弱故障振动数据进行分析,结果表明:小波相邻系数可以有效降低淹没滚动轴承早期微弱故障特征的背景噪声;时频小波切片变换方法能有效提取出经小波相邻系数降噪后振动信号的时频特征,即滚动轴承发生故障时的特征频率及其谐频成分,验证了所述方法的有效性.此外,通过与谱峭度时频分析结果的对比,证明所述方法更能准确扑捉到滚动轴承发生早期微弱故障时的时频特性,突出了所述方法的优越性.The wavelet de-noising using neighboring coefficients and frequency slice wavelet transform (FSWT) were combined for weak fault time-frequency feature extraction of rolling bearing.Based on the analysis results of the vibration data of rolling element bearing's early weak fault,the strong background noise of rolling bearing can be decreased effectively by the wavelet de-nosing using neighboring coefficients method.Furthermore,the denoised signal was handled by the FSWT method and better time-frequency feature extraction result was obtained compared with the method using FSWT directly,so the effectiveness of the proposed method was verified.Besides,the advantages of the proposed method were also verified by comparing with other time-frequency method such as spectral kurtosis.
关 键 词:小波相邻系数降噪 滚动轴承 时频小波切片变换(FSWT) 早期微弱故障 特征提取
分 类 号:V214.33[航空宇航科学与技术—航空宇航推进理论与工程] TP206[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15