检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵小敏[1] 孙志刚[1] 夏明[1] ZHAO Xiaomin SUN Zhigang XIA Ming(College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)
机构地区:[1]浙江工业大学计算机科学与技术学院,浙江杭州310023
出 处:《浙江工业大学学报》2017年第4期439-444,共6页Journal of Zhejiang University of Technology
基 金:国家自然科学基金资助项目(61401397);浙江省科技厅公益资助项目(2014C33073)
摘 要:随着机动车交通违法行为的增多,民众利用智能手机拍照举报式的监督模式应运而生.针对由手机拍照举报的静态图像的车辆识别问题,提出一种基于局部学习的车辆识别方法.与在整个样本空间里训练一个全局模型的传统方法不同,该方法以局部学习中心选取策略和巴氏距离大小为基础,将样本划分若干子集并在每个子集上训练一个局部分类器.仿真结果表明:与已有形状模型法、超像素级别等图像目标识别方法相比,该方法在静态车辆图像识别的问题上拥有更好的识别率和识别效果.Along with the increase in vehicle traffic violations, a supervising mode that people use smart phones to take pictures and report the illegal phenomenon comes into being. For the problem that recognizes vehicle from the photoes taken by smart phones, a vehicle recognition method based on local learning is proposed. We divide the sample into several subsets basing on center selection policy for local learning and Bhattacharyya distance, then train a local classifier for each subset, which is different from the traditional training on the whole sample space. The simulation results show that, compared with several existing image target recognition method, this method has better recognition rate and a good recognition effect on the recognition problem of vehicle static image.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.166.121