检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:包晓安[1] 杨亚娟[1] 张娜[1] 林青霞[1] 俞成海[1]
出 处:《计算机科学》2017年第6期177-181,共5页Computer Science
基 金:国家自然科学基金项目(61379036;61502430);浙江省自然科学基金项目(LY12F02041);浙江省重大科技专项重点工业项目(2014C01047);浙江理工大学521人才培养计划项目资助
摘 要:最小覆盖表生成是组合测试研究的关键问题。基于演化搜索的粒子群算法在生成覆盖表时能得到较优的结果,但其性能受配置参数的影响。针对此问题,将one-test-at-a-time策略和自适应粒子群算法相结合,以种群粒子优劣为依据对惯性权重进行自适应调整,使其在覆盖表生成上具有更强的适用能力。为进一步提升算法性能,构造了一个优先级度量函数用于度量每个组合的权值,优先选取权值最高的组合用于单条测试用例的生成。最后,编程实现该算法,并将其与原有粒子群算法在组合测试用例集生成上展开对比性实验分析,结果证实该算法在规模和执行时间上具有竞争力。Obtaining minimum coverage array is one of the key issues in the combination test.Particle swarm optimization(PSO),as one of the evolutionary search based methods,can obtain the smallest covering arrays,but its performance is significantly impacted by the parameters.To solve this problem,we combined one-test-at-a-time strategy and particle swarm optimization and proposed an adaptive particle swarm optimization algorithm.Based on the quality of the particles in the population,the strategy adaptively adjusts inertia weights which makes it have stronger ability of application.In order to further improve the performance of the algorithm,we constructed a priority measure function which is used to measure the weight of each combination,and we preferred to select a combination which has the highest weight to generate a single test case.Finally the paper implemented the algorithm by programming,and compared this approach with the original particle swarm optimization algorithm in test suite size and generation time.The results show the competitiveness of this approach.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.227