检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:向天烛 高熔溶 闫利[2] 徐振亮[3] XIANG Tianzhu GAO Rongrong YAN Li XU Zhenliang(State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China School of Earth and Space Sciences, Peking University, Beijing 100871, China)
机构地区:[1]武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079 [2]武汉大学测绘学院,湖北武汉430079 [3]北京大学地球与空间科学学院,北京100871
出 处:《武汉大学学报(信息科学版)》2017年第7期911-917,共7页Geomatics and Information Science of Wuhan University
基 金:国家自然科学基金(41271456)~~
摘 要:针对传统的热红外与可见光图像融合方法对比度低,容易出现边缘细节、目标等信息丢失或减弱的现象,提出一种顾及区域特征差异的热红外与可见光图像多尺度融合方法。首先采用自适应PCNN(脉冲耦合神经网络)模型和二维Renyi熵相结合的图像分割方法,分别对红外和可见光图像进行区域分割;然后利用非下采样Contourlet变换对原图像进行多尺度多方向分解,根据区域的特征差异设计不同的融合规则,融合热红外与可见光图像。实验结果表明,该方法不仅能有效地融合热红外图像的目标特征,还能更多地保留可见光图像丰富的背景信息,融合图像对比度高,在视觉效果和客观评价上优于传统融合方法。To overcome the defects of existing algorithms that the target information and edge details are easily lost and that fusion image contrast is low,a novel fusion method that combines region feature and multi-scale transform for thermal infrared and visible images is proposed in this paper.Firstly,the source infrared and visible images are segmented based on adaptive pulse coupled neural network(PCNN)and two-dimension Renyi entropy,and a joint segmentation map can be acquired through region joint operation.Then the original images are multi-scale and multi-directional decomposed by nonsubsampled contourlet transform(NSCT).After that,the fusion rules are designed based on region feature difference in NSCT domain.Finally,the fusion image is reconstructed by NSCT inverse transform.Experimental results show the proposed method can effectively fuse infrared target feature,preserve the background information as much as possible,and obtain good contrast.The proposed method is superior to the traditional methods in terms of both subjective evaluation and objective evaluation.
关 键 词:图像融合 区域分割 脉冲耦合神经网络 RENYI熵
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222