检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tian-Bi Jiang Gui-Song Xia Qi-Kai Lu Wei-Ming Shen
机构地区:[1]State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University Wuhan 430079, China [2]School of Electronic Information, Wuhan University, Wuhan 430072, China
出 处:《Journal of Computer Science & Technology》2017年第4期726-737,共12页计算机科学技术学报(英文版)
摘 要:This paper investigates the problem of retrieving aerial scene images by using semantic sketches, since the state-of-the-art retrieval systems turn out to be invalid when there is no exemplar query aerial image available. However, due to the complex surface structures and huge variations of resolutions of aerial images, it is very challenging to retrieve aerial images with sketches and few studies have been devoted to this task. In this article, for the first time to our knowledge, we propose a framework to bridge the gap between sketches and aerial images. First, an aerial sketch-image database is collected, and the images and sketches it contains are augmented to various levels of details. We then train a multi-scale deep model by the new dataset. The fully-connected layers of the network in each scale are finally connected and used as cross-domain features, and the Euclidean distance is used to measure the cross-domain similarity between aerial images and sketches. Experiments on several commonly used aerial image datasets demonstrate the superiority of the proposed method compared with the traditional approaches.This paper investigates the problem of retrieving aerial scene images by using semantic sketches, since the state-of-the-art retrieval systems turn out to be invalid when there is no exemplar query aerial image available. However, due to the complex surface structures and huge variations of resolutions of aerial images, it is very challenging to retrieve aerial images with sketches and few studies have been devoted to this task. In this article, for the first time to our knowledge, we propose a framework to bridge the gap between sketches and aerial images. First, an aerial sketch-image database is collected, and the images and sketches it contains are augmented to various levels of details. We then train a multi-scale deep model by the new dataset. The fully-connected layers of the network in each scale are finally connected and used as cross-domain features, and the Euclidean distance is used to measure the cross-domain similarity between aerial images and sketches. Experiments on several commonly used aerial image datasets demonstrate the superiority of the proposed method compared with the traditional approaches.
关 键 词:SKETCH aerial image retrieval multi scale deep cross-domain model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33