Weighted variation inequalities for differential operators and singular integrals in higher dimensions  被引量:9

在线阅读下载全文

作  者:MA Tao TORREA Jose L. XU QuanHua 

机构地区:[1]School of Mathematics and Statistics,Wuhan University [2]Departamento de Matemticas,Universidad Autónoma de Madrid [3]Institute for Advanced Study in Mathematics,Harbin Institute of Technology [4]Laboratoire de Mathematiques,Universite de Franche-Comte [5]Institut Universitaire de France

出  处:《Science China Mathematics》2017年第8期1419-1442,共24页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11671308 and 11431011);Ministerio de Economia y Competitividad/al Fondo Europeo de Desarrollo Regional(Grant No.MTM2015-66157-C2-1-P)

摘  要:We prove weighted q-variation inequalities with 2<q<∞for sharp truncations of singular integral operators in higher dimensions.The vector-valued extensions of these inequalities are also given.Parallel results are proven for differential operators.We prove weighted q-variation inequalities with 2 〈 q 〈 θ for sharp truncations of singular integral operators in higher dimensions. The vector-valued extensions of these inequalities are also given. Parallel results are proven for differential operators.

关 键 词:variation inequalities A_(p) weights differential operators singular integrals vector-valued variationin equalities 

分 类 号:O175.3[理学—数学] O177.6[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象