A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows  被引量:4

A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows

在线阅读下载全文

作  者:ZHENG XiaoBo CHEN Gang XIE XiaoPing 

机构地区:[1]School of Mathematics, Sichuan University

出  处:《Science China Mathematics》2017年第8期1515-1528,共14页中国科学:数学(英文版)

基  金:supported by Major Research Plan of National Natural Science Foundation of China (Grant No. 91430105)

摘  要:This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.

关 键 词:quasi-Newtonian Stokes equation weak Galerkin method DIVERGENCE-FREE optimal error estimate 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象