检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈焕银[1]
出 处:《数学进展》2017年第4期563-569,共7页Advances in Mathematics(China)
基 金:Supported by the Natural Science Foundation of Zhejiang Province(No.LY17A010018)
摘 要:环R称为可分环,如果对任何有限生成投射右R-模A和B,AA≌AB≌BBA≌B.假设R是置换可分环,其中2可逆,a-a^3∈R正则,证明了a∈R单位正则当且仅当R(1-a^2)R=Rr(a)=e(a)R.环R中元素a称为特殊clean元,如果有幂等元e∈R使得a-e∈R可逆,而且aR∩eR=0.进一步,证明了a∈R是特殊clean元,如果aR/ar(a^2),R/(aR+r(a))投射,而且R(a-a^3)R=Rar(a^2)=e(a^2)aR.由此推广了正则可分环中相关结论.A ring R is separative provided that for all finitely generated projective right R-modulesA and B, A@A≌ A+B ≌ B+B - A ≌ B. Let Rbeaseparative exchange ring in which 2 is invertible, and let a - a3 E R be regular. In this note, we prove that a E R is unit-regular if R(1 - α2)R = Rr(α) = l(α)R. An element α in a ring R is special clean if there exists an idempotent e ∈ R such that a - e E R is a unit and aR ∩ eR =0. Furthermore, we prove that a e R is special clean if aR/ar(a2), R/(aR + r(a)) are projective and R(a-a3)R= Rar(a2) = l(a2)aR. These also extend the corresponding results in separative regular rings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7