基于OpenCV的视频人脸检测与跟踪  被引量:5

Face Detection and Tracking of Video Images based on OpenCV

在线阅读下载全文

作  者:杨幸[1] 王力[1] 

机构地区:[1]贵州大学大数据与信息工程学院,贵州贵阳550025

出  处:《通信技术》2017年第7期1412-1416,共5页Communications Technology

摘  要:随着社会的不断发展,实时人脸检测与跟踪已在安全监控、人机交互等领域广泛应用。Adaboost算法利用haar特征以及其检测速度快被广泛使用,但对侧面人脸、扭曲变形人脸检测效果不理想。针对这一问题,提出将椭圆肤色检测引入人脸检测系统中。针对Camshift算法需要手动选择跟踪对象,跟踪检测出的人脸,实现实时、自动人脸跟踪。同时,在跟踪过程中引入距离约束条件,使跟踪结果更加稳定。实验结果表明,在opencv的基础上,采用肤色检测、Adaboost算法以及Camshift算法相结合的方法,实现了快速、自动和准确的人脸检测和跟踪。With the continuous social development,the real-time face detection and tracking is widely used in the security monitoring, human-computer interaction and other fields. Adaboost algorithm, for Haar feature and fast detection speed, is widely applied, but is not so ideal for side-face and distorted-face detection. To solve this problem, elliptic skin color detection is introduced into face detection system. Camshift algorithm requires manual selection of the tracking object, thus to track the detected face and realize real-time and automatic face tracking. Meanwhile, distance constraint is introduced into the tracking process, thus to make the tracking results more stable. The experimental results indicate that, based on the OpenCV and in combination with skin color detection, Adaboost algorithm and Camshift algorithm can realize fast, automatic and accurate face detection and tracking.

关 键 词:肤色检测 ADABOOST算法 CAMSHIFT算法 人脸检测与跟踪 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象