检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
出 处:《电子学报》2017年第7期1668-1676,共9页Acta Electronica Sinica
基 金:国家自然科学基金(No.61175126);国家国际科技合作专项(No.2015DFG12150)
摘 要:为提高基于内容的图像检索的检索性能和检索速度,克服低层视觉特征与高层语义概念间的"语义鸿沟",提出一种基于教与学优化的图像检索相关反馈算法(TLBO-RF).结合图像检索问题的特殊性和粒子群优化算法的优点,对TLBO算法中个体的更新机制进行了改进,通过将相关图像集的中心作为教师以及引入学员最好学习状态Pbest,使之朝用户感兴趣的相关图像区域快速收敛.将该算法与目前效果最好的两种基于进化算法的相关反馈技术在两套标准图像测试集上进行对比,结果表明本文算法相较于另外两种算法具有明显的优势,不仅提高了图像检索性能,同时也加快了图像检索速度,更好地满足了用户的检索要求.To improve the performance of image retrieval,and accelerate the speed of image retrieval in content-based image retrieval and reduce the"semantic gap"between visual low-level features and high-level semantic,relevance feedback image retrieval based on teaching-learning-based optimization algorithm is proposed( TLBO-RF). Considering the specificity of image retrieval and the advantage of the PSO,the update strategy of individual is modified in TLBO,the center of the relevant images is regarded as the teacher and the personal best is introduced,which makes the algorithm converge fast to the region of relevant images that the user is interested in. TLBO-RF is compared to two state-of-the-art RFs based on evolutionary algorithm on two benchmark images. The results showthat TLBO-RF has obvious advantage in comparison with other two algorithms,not only increases the performance of image retrieval,but also improves the image retrieval speed,and can better meet the user needs of image retrieval.
关 键 词:基于内容的图像检索 相关反馈 教与学优化算法 粒子群优化算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222