LMD特征融合与SVM的供水管道堵塞识别  被引量:5

Identification of water supply pipeline blockage based on LMD features fusion and SVM

在线阅读下载全文

作  者:闫菁[1,2] 冯早 吴建德[1,2] 马军[3] 

机构地区:[1]昆明理工大学信息工程与自动化学院,云南昆明650500 [2]云南省矿物管道输送工程技术研究中心,云南昆明650500 [3]昆明理工大学机电工程学院,云南昆明650500

出  处:《传感器与微系统》2017年第7期57-61,共5页Transducer and Microsystem Technologies

基  金:国家自然科学基金资助项目(61563024;51169007);昆明理工大学引进人才科研启动基金项目(KKZ3201503015)

摘  要:针对城市供水管道早期堵塞难以检测的问题,提出了一种基于局部均值分解(LMD)的分量信号特征提取,结合支持向量机(SVM)的堵塞故障识别方法。先对声响应信号进行LMD,得到若干乘积函数(PF)分量,进而采用相关分析法选取有效PF分量,对有效PF分量分别提取能量熵、近似熵和平均声压三个指标的特征,构建分类特征集。最后利用交叉验证(CV)方法优化参数的SVM分类器识别堵塞故障信号。实验结果表明:采取基于LMD特征融合和通过CV优化的SVM相结合的方法可以有效识别供水管道的初期堵塞。与基于LMD特征融合和BP神经网络的方法进行了对比,结果表明:本文方法具有更好的堵塞故障识别效果。Aiming at the detection problem of blockage within the urban water supply pipeline in the early stage, a method combined component signal feature extraction with support vector machine (SVM)for blockage recognition based on local mean decomposition(LMD) is proposed. The first step of this method is to decompose the acoustic response signal by LMD,so that a number of PF components can be obtained. Then the correlation analysis method is used to select the effective PF components. The characteristics of energy entropy, approximate entropy and average sound pressure of the effective PF components are extracted respectively, so the classification feature sets can be constructed. Finally, the cross validation(CV) is used to optimize the parameters of the SVM classifier to identify the blockage fault signal. The results from the experiments have shown that the method can identify the blockage in the water supply pipeline effectively based on the combination usage of LMD component features and cross validation SVM. In addition, the method is compared with the method based on LMD feature fusion and BP neural network and the results suggest that the proposed method has a better performance on the partial blockage recognition.

关 键 词:供水管道 堵塞物识别 局域均值分解 特征融合 支持向量机 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象