基于小波包的开关电流电路故障诊断  被引量:1

Fault detection in switched current circuits based on preferred wavelet packet

在线阅读下载全文

作  者:张镇[1] 段哲民[1] 龙英[2] ZHANG Zhen DUAN Zhe-min LONG Ying(School of Electronic Information, Northwestern Polytechnic University, Xi'an 710072, China Department of Electronic & Electrical Engineering, Changsha University, Changsha 410022, China)

机构地区:[1]西北工业大学电子信息学院,西安710072 [2]长沙学院电子与电气工程学院,长沙410022

出  处:《工程科学学报》2017年第7期1101-1106,共6页Chinese Journal of Engineering

基  金:国家自然科学基金资助项目(61201108;61102035)

摘  要:为提高开关电流电路故障诊断的精度,提出了一种基于小波包优选和优化BP神经网路的开关电流电路特征抽取与识别方法.首先对开关电流电路原始响应信号进行多层次的小波包分解,接着计算N层分解后的归一化能量值,以特征偏离度作为评价选择最优小波包基,构建最优故障特征向量,最后将提取的最优故障特征通过遗传算法优化的BP神经网络进行分类.该方法以实例电路进行验证,结果表明所有的软故障均得到了有效的分类,说明了该方法在开关电流电路故障诊断中的优越性.In order to improve the accuracy of switched current circuit fault diagnosis,a feature extraction and recognition method of switched current circuit based on wavelet packet optimization and optimization of BP neural network was proposed.Firstly,the wavelet packet decomposition of the original response signal of the switched current circuit was carried out.Then,the normalized energy value after the decomposition of the N layer was calculated,and the optimal wavelet packet basis was selected by using the characteristic deviation as the evaluation.Finally,the optimal fault feature vector was constructed.The extracted optimal fault characteristics were classified by BP neural network optimized by genetic algorithm.The results of this method were verified by the example circuit.The results show that all the soft faults are effectively classified,and the superiority of the method in the fault diagnosis of the switched current circuit is illustrated.

关 键 词:开关电流电路 故障诊断 小波包变换 遗传算法 BP神经网络 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象