一种自适应双码本模型目标检测算法  被引量:3

Target Detection Algorithm Based on Self_adaptive Dual Codebook Model

在线阅读下载全文

作  者:范京[1] 叶东毅[1] 柯逍[1] 陈昭炯[1] 

机构地区:[1]福州大学数学与计算机科学学院,福州350116

出  处:《小型微型计算机系统》2017年第8期1861-1866,共6页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61502105)资助

摘  要:自适应码本(SACB)算法在目标物体检测中取得了较好的效果,对周期性晃动有一定抗干扰性,但仍存在"鬼影"现象、对密集型物体晃动抗噪性差、码字清除策略过分依赖于时间等问题.对此提出一种改进的自适应双码本(DECB)算法,通过增加前景像素记忆层构成背景-前景双码本模型,实时地将频繁出现的伪前景加入背景模型中,以消除"鬼影"现象;利用相邻像素的相似时空特性,随机与相邻像素码本匹配以提高对密集型物体晃动的抗噪能力;在码字更新机制中引入生命周期,以降低码字清除策略对时间的依赖性.实验结果表明,DECB算法能够有效消除"鬼影"现象,提高抗噪性且实时性良好.Serf-adaptive Codebook ( SACB ) algorithm, which has a particular anti-interference performance on periodic shaking, has achieved good effect in the target object detection, but there still exist some drawbacks such as "empty shadow", poor noise-resistance to intensive objects shacking and codeword-clearing mechanism overdependent on time. To address these problems, an improved self-adaptive dual codebook ( DECB ) algorithm is proposed. By constructing background-foreground dual codebook model with the introduction of a foreground pixel memory layer and moving the pseudo-foreground data which appears frequently into background model in real time,the "empty shadow" is eliminated. To enhance the noise resistance of intensive objects shaking, the pixel is randomly matched with the codebook of its adjacent one, taking the advantage of the similarity of spatiotemporal characteristic among adjacent pixels. The dependence of codeword-clearing strategy on time is reduced by introducing life-style to codeword update mechanism. The experimental results show that DECB can effectively eliminate the phenomenon of "empty shadow" and achieve both higher noise resistance and detection accuracy with better real-time performance.

关 键 词:运动目标检测 双码本模型 背景减除 自适应码本 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象