检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张云龙[1] 袁浩[1] 张晴晴[1] 齐国红[1]
机构地区:[1]郑州大学西亚斯国际学院,河南郑州451150
出 处:《江苏农业科学》2017年第14期171-174,共4页Jiangsu Agricultural Sciences
基 金:国家自然科学基金(编号:61473237);河南省科技攻关计划(编号:172102210512);河南省高等学校重点科研项目(编号:16A510034);郑州大学西亚斯国际学院校级科研项目(编号:2016KY48)
摘 要:识别苹果病害是一个重要的研究课题,该研究成果对大面积苹果病害监测具有重要意义。针对苹果常见的3种叶部病害,提出一种基于颜色特征和差直方图的苹果叶部病害识别方法。首先采用改进的mean-shift图像分割算法分割病害叶片图像的病斑,然后计算病斑的颜色特征和差直方图作为病害的分类特征。该特征不仅反映病斑图像的灰度统计信息,还反映病斑图像的空间特征和灰度的渐变度,而且对病斑图像的光照、平移、旋转具有不变性。最后利用支持向量机识别病害类型。在3种常见苹果叶部病害叶片图像数据库上的试验结果表明,该方法能够有效识别苹果常见的叶部病害,平均识别率高达96%以上。该方法为苹果病害的智能诊断系统提供了技术支撑。
关 键 词:苹果 病害识别 病害叶片 特征提取 颜色特征和差直方图
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.85.236