增量支持向量机核函数的优化  被引量:4

Optimization of Kernel Function in Incremental Support Vector Machine

在线阅读下载全文

作  者:李村合[1] 马敏敏 

机构地区:[1]中国石油大学(华东)计算机与通信工程学院,青岛266580

出  处:《计算机系统应用》2017年第8期284-287,共4页Computer Systems & Applications

摘  要:支持向量机的核函数类型分为两类:局部核函数和全局核函数.局部核函数的值只受到相距很近数据点的影响,有很好的学习能力.全局核函数的值会受到距离较远数据点的影响,有很好的推广泛化能力.针对局部核函数学习能力良好但泛化能力差的缺点,提出一种结合局部核函数和全局核函数构造新联合函数的方法.实验结果表明,与局部核函数和全局核函数相比,新联合核函数有更好的预测能力,并且能够适应增量学习的过程.The Kernel function to support vector machines can be divided into two types: the local kemel function and the global kernel function. Because the local kernel function has excellent learning ability, but its generalization ability is limited, we structure a joint kernel function with two kinds of functions, so that it can combine the advantages of the two kinds of kernel functions. The experiment proves that the joint kernel function can adapt to the incremental learning process and it has better performance.

关 键 词:支持向量机 增量学习 全局核函数 局部核函数 联合核函数 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象