基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法  被引量:32

Traffic sign recognition method based on HOG-Gabor feature fusion and Softmax classifier

在线阅读下载全文

作  者:梁敏健[1,2] 崔啸宇[1,3] 宋青松[1,4] 赵祥模[1] LIANG Min-jian CUI Xiao-yu SONG Qing-song ZHAO Xiang-mo(School of Information Engineering, Chang'an Universky, Xi'an 710064, Shaanxi, Cbina Branch of Zhuhai, Guangdong Institute of Special Equipment Inspection and Research, Zhuhai 519002, Guangdong, China Dongfeng Peugeot Citroen Automobile Co. , Ltd. , Wuhan 430056, Hubei, China Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago 60607, Illinois, USA)

机构地区:[1]长安大学信息工程学院,陕西西安710064 [2]广东省特种设备检测研究院珠海检测院,广东珠海519002 [3]神龙汽车有限公司,湖北武汉430056 [4]伊利诺伊大学芝加哥分校土木与材料工程系,伊利诺伊芝加哥60607

出  处:《交通运输工程学报》2017年第3期151-158,共8页Journal of Traffic and Transportation Engineering

基  金:国家自然科学基金项目(61201406);中央高校基本科研业务费专项资金项目(310824162022)

摘  要:为了提高交通标志识别的正确率和实时性,提出了一种基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法。采用Gamma矫正方法提取HOG特征,采用对比度受限的自适应直方图均衡化方法提取Gabor特征,基于线性特征融合原理,将提取的HOG和Gabor特征向量直接串联,得到刻画交通标志的融合特征向量,采用Softmax分类器对融合特征向量进行分类,采用德国交通标志识别基准(GTSRB)数据库测试了所提方法的有效性,比较了基于单特征与融合特征的交通标志识别效果。试验结果表明:在图像增强过程中,针对HOG特征,采用Gamma矫正方法的分类正确率最大,为97.11%,针对Gabor特征,采用限制对比度的直方图均衡化方法的分类正确率最大,为97.54%;采用Softmax分类器的最小分类正确率为97.11%,耗时小于2s;针对HOG-Gabor融合特征,采Softmax分类器的识别率高达97.68%,因此,基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法的识别率高,实时性强。In order to improve the accuracy and real-time performance of traffic sign recognition,a traffic sign recognition method was proposed based on HOG-Gabor feature fusion and Softmax classifier.HOG(histogram of oriented gradient)feature was extracted by using the Gamma correction method,and Gabor feature was extracted by using the contrast limited adaptive histogram equalization method.According to the linear feature fusion principle,HOG and Gabor feature vectors were connected to constitute the fusional feature vector for depicting the traffic signs.Theeffectiveness of the proposed method was verified based on the GTSRB(German Traffic Sign Recognition Benchmark)data set.The recognition effects of traffic sign based on single feature and fusional feature were compared.Experimental result shows that in image enhancement,the classification accuracy based on HOG feature is 97.11% and is largest by the Gamma correction method,and the classification accuracy based on Gabor feature is 97.54% and is largest by the contrast limited adaptive histogram equalization method.The minimum classification accuracy is 97.11% by using Softmax classifier,and classification time is only 2s.The correct recognition rate of traffic sign reaches 97.68% by using the proposed method based on HOG-Gabor fusional features,so the traffic sign recognition method based on HOG-Gabor fusional features and Softmax classifier has high recognition rate and real-time performance.

关 键 词:交通信息工程 智能车 交通标志识别 特征提取 Softmax分类 特征融合 

分 类 号:U491.52[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象