检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学水文水资源与水利工程科学国家重点实验室,南京210098 [2]河海大学港口海岸与近海工程学院,南京210098
出 处:《水道港口》2017年第3期228-234,共7页Journal of Waterway and Harbor
基 金:国家自然科学基金(51620105005)
摘 要:基于GOCI遥感数据,通过三种遥感模型的比较,选择了精度较高的神经网络模型,对2015年6月大潮时期的悬沙场进行解译,并建立了二维潮流泥沙数学模型对同时段的悬沙场进行了模拟。比较遥感解译与数模的结果得到:金塘水道悬沙场呈现北高南低的分布特征,时间上具有明显的周期性,涨潮时悬沙量逐渐减小,落潮时逐渐增大;遥感解译与数模模拟推算得到的水体表面的悬沙场在分布趋势和量值上较为一致,为大范围水域缺少泥沙分布资料的情况提供了一种可借鉴的研究方法。Based on the data from the GOCI(Geostationary Ocean Color Imager), three different remote sensing models were compared and the neural network model with a relative higher accuracy was chosen to interpret the SSC (Suspended Sediment Concentration) field during the spring tide in June 2015. A 2D tidal current and suspended sediment model was adopted to carry out numerical simulation of suspended sediment movement during the same period. Comparison results between the remote sensing interpretation and the numerical model show that the SSC is higher in the north part of the Jintang Channel than it in the south part, and it has a periodic characteristic that the SSC increases during the flood period and decreases during the ebb tide. The remote sensing results and deduced numerical model results are relatively similar in both water surface SSC distribution and magnitude, which provides a method for areas with large horizontal scales lacking SSC data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222