检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华侨大学计算机科学与技术学院,厦门361021
出 处:《模式识别与人工智能》2017年第8期754-760,共7页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学青年科学基金项目(No.61673186;61370006);福建省自然科学基金项目(No.2014J01237);华侨大学中青年教师科研提升计划(No.ZQN-PY116);华侨大学研究生科研创新能力培育计划项目(No.1511314004)资助~~
摘 要:现有的大多数流形学习算法偏重保持流形的几何结构,并未考虑到样本点的标签信息,这在一定程度上限制了流形学习算法在数据分类中的应用.因此文中提出一种基于近邻元分析的半监督流形学习算法,采用近邻元分析学习距离度量矩阵,在距离度量方式下选择样本点的局部邻域点.基于距离度量方式构造样本点和邻域点的局部几何结构,并在样本点的低维嵌入坐标中保持这种局部几何结构不变.3个不同数据集上的分类实验验证了文中算法的有效性.In most of the existing manifold learning algorithms, the geometry structure of the data instances is preserved, but the label information is ignored. Therefore, the application of manifold learning algorithms in data classification is limited. In this paper, a semi-supervised manifold learning algorithm based on neighborhood components analysis is proposed. A distance metric matrix is learned by using neighbor components analysis and local neighbors of the sample points are selected by using the new distance metric. The local geometric structures of the sample points and their neighbors are constructed under the new distance metric, and the local geometric structures are preserved in the low-dimensional embedding coordinates of the sample points. The classification experiments conducted on three different datasets demonstrate the efficiency of the proposed algorithm.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.237.97