检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑新[1]
出 处:《包装工程》2017年第17期217-221,共5页Packaging Engineering
摘 要:目的为了实现印刷生产过程中网点异常状态的智能诊断,提出一种基于二维经验模式分解(BEMD)的网点特征提取方法。方法通过对网点图像的BEMD分析,获取了其二维本征模式分量,并利用灰度共生矩阵(GLCM)对其进行特征提取,构建印刷网点的特征表示向量。结果依托支持向量机决策方法开展分类实验,所提出的方法能够准确诊断出网点压力不当、水墨不均等异常状态,网点分类实验的正确率达到90%以上。结论 BIMF-GLCM分析对于网点特性有着很好的表征能力,相关研究为印刷网点智能诊断特征集的构建提供了有效方法。The work aims to propose a dot feature extraction method based on the bi-dimensional empirical mode decomposition(BEMD), in order to achieve the intelligent diagnosis of the abnormal dot state in the printing process. Through the BEMD analysis on the dot image, its 2D intrinsic mode component was obtained and its feature extraction was done with the gray-level co-occurrence matrix(GLCM), so as to construct the feature representation of the printing dot. A classification experiment was carried out through the decision-making method of SVM. The proposed method could accurately diagnose such abnormal states as improper dot pressure and uneven ink. The accuracy rate of the dot classification experiment reached over 90%. BIMF-GLCM analysis has a good representational capacity for dot features and the related research provides an effective method for the construction of intelligent diagnosis feature set in the printing dots.
关 键 词:印刷网点 纹理分析 二维经验模式分解 灰度共生矩阵
分 类 号:TS801.9[轻工技术与工程] TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33