L-Fuzzy空间中相关的拟映射  

Related Pre-mappings in L-Fuzzy Spaces

在线阅读下载全文

作  者:潘伟 徐振国[2] 王祎[2] 赵颖[3] PAN Wei XU Zhenguo WANG Yi ZHAO Ying(School of Mathematics, Mudanjiang Normal University, Mudanjiang 157011, Heilongjiang Province, China National Science and Technology Infrastructure Center, Beijing 100862, China Beijing North Vehicle Group Corporation, Beijing 100072, China)

机构地区:[1]牡丹江师范学院数学科学学院,黑龙江牡丹江157011 [2]国家科技基础条件平台中心,北京100862 [3]北京北方车辆集团有限公司,北京100072

出  处:《吉林大学学报(理学版)》2017年第5期1107-1111,共5页Journal of Jilin University:Science Edition

基  金:国家自然科学基金(批准号:M1551001);牡丹江师范学院青年学术骨干项目(批准号:GG2017002)

摘  要:利用L-fuzzy拓扑空间中的r-拟半开L-集和r-拟半闭L-集,定义拟半连续映射、拟半开映射、拟半闭映射、拟半不定映射、拟半不定开映射和拟半不定闭映射,证明了每个拟连续映射都是拟半连续映射,每个拟开(拟闭)映射都是拟半开(拟半闭)映射,每个拟半不定映射都是拟半连续映射,并给出上述映射的等价刻画.Using r-pre-semiopen(r-pre-semiclosed)L-set,we defined pre-semicountinous mapping,pre-semiopen mapping,pre-semiclosed mapping,pre-semiirresolute mapping,pre-semiirresolute open mapping and pre-semiirresolute closed mapping in L-fuzzy topological spaces.We proved that every percountinous mapping was pre-semicountinous mapping,every peropen(preclosed)mapping was per-semiopen(pre-semiclosed)mapping.Moreover,we gave some equivalent characterizations of the above mappings.

关 键 词:L-FUZZY拓扑空间 r-拟半开(拟半闭)L-集 拟半连续映射 拟半开(拟半闭)映射 拟半不定映射 拟半不定开(拟半不定闭)映射 

分 类 号:O189.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象