检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王芳芳 杨晋 WANG Fangfang YANG Jin(College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, Chin)
出 处:《济南大学学报(自然科学版)》2017年第4期334-338,共5页Journal of University of Jinan(Science and Technology)
基 金:山西省自然科学基金项目(2015011001)
摘 要:为了估计非负不可约矩阵最大特征值的界,构造2个新矩阵,利用Perron-Frobenius定理和新构造矩阵的行和与列和的性质,估计非负不可约矩阵最大特征值的上、下界,并推导极限估计式。结果表明,这种基于PerronFrobenius定理的估计非负不可约矩阵最大特征值的方法的估计范围比已有结论更精确。To compute bounds for the greatest eigenvalue of nonnegative irreducible matrices, two matrices were constructed. The upper and lower bounds for the greatest eigenvalue of nonnegative irreducible matrices were estimated by using Perron-Frobenius theory and sums of rows and columns of constructed matrices. A limit estimation formula was deduced. The results show that the estimated value of the method of estimating the greatest eigenvalue of nonnegative irreducible matrices based on Perron-Frobenius theory is more accurate than the existing conclusion.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7