检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xianyun Wang Changchun Bao Feng Bao
机构地区:[1]Speech and Audio Signal Processing Laboratory,Faculty of Information Technology,Beijing University of Technology [2]Department of Electrical and Computer Engineering,The University of Auckland
出 处:《China Communications》2017年第9期11-22,共12页中国通信(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No.61471014,61231015)
摘 要:Many speech enhancement algorithms that deal with noise reduction are based on a binary masking decision(termed as the hard decision), which may cause some regions of the synthesized speech to be discarded. In view of the problem, a soft decision is often used as an optimal technique for speech restoration. In this paper, considering a new fashion of speech and noise models, we present two model-based soft decision techniques. One technique estimates a ratio mask generated by the exact Bayesian estimators of speech and noise. For the second technique, we consider one issue that an optimum local criterion(LC) for a certain SNR may not be appropriate for other SNRs. So we estimate a probabilistic mask with a variable LC. Experimental results show that the proposed method achieves a better performance than reference methods in speech quality.Many speech enhancement algorithms that deal with noise reduction are based on a binary masking decision(termed as the hard decision), which may cause some regions of the synthesized speech to be discarded. In view of the problem, a soft decision is often used as an optimal technique for speech restoration. In this paper, considering a new fashion of speech and noise models, we present two model-based soft decision techniques. One technique estimates a ratio mask generated by the exact Bayesian estimators of speech and noise. For the second technique, we consider one issue that an optimum local criterion(LC) for a certain SNR may not be appropriate for other SNRs. So we estimate a probabilistic mask with a variable LC. Experimental results show that the proposed method achieves a better performance than reference methods in speech quality.
关 键 词:SPEECH ENHANCEMENT SOFT masks CASA THRESHOLD
分 类 号:TN912.35[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28