检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院车辆与电气工程系,河北石家庄050003 [2]北京跟踪与通信技术研究所,北京100094
出 处:《河北工业大学学报》2017年第4期75-79,共5页Journal of Hebei University of Technology
基 金:国家自然科学基金(51307184)
摘 要:电能质量扰动的准确分类,是电能品质改善和治理的重要决策依据.为解决支持向量机(SVM)分类器在多分类问题中的不足,采用模式识别领域中聚类分析的思想,提出了一种基于遗传算法(GA)的SVM决策树多分类电能质量扰动识别方法.该方法首先对参数进行初步最优值筛选,将得到的初步最优值作为遗传算法初始值进行编码,根据设立的适应度函数完成GA中的选择、交叉、变异等操作,进一步搜索最优值,再以最优决策树构建SVM分类器,最终实现SVM的多分类.仿真结果表明,相比未经优化的SVM模型,基于GA算法优化的SVM具有较高的识别精度和抗噪能力.The accurate classification of power quality is an important basis for the improvement and management. In or- der to solve the lack of support vector machine (SVM) classifier in multi classification problem, this paper proposes a new power quality disturbance classification method based on genetic algorithm (GA) and SVM with the cluster analysis in pat- tern recognition. Firstly, the method is used to select the optimal parameters, and then the results are encoded as the initial values of the genetic algorithm. According to the fitness function, the selection, crossover and mutation operations of GA are completed, and the optimal values are searched further. Finally the optimal decision tree is used to construct the SVM multi classifier. The simulation results show that the optimized SVM based on GA has higher recognition accuracy and anti noise ability than the non-optimized SVM model.
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117