检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学水利科学与工程学院,山西太原030024 [2]中国冶金地质总局第三地质勘查院,山西太原030002
出 处:《水力发电》2017年第10期1-4,共4页Water Power
基 金:山西省自然科学基金资助项目(2015021169)
摘 要:针对传统的BP神经网络未对影响因子进行筛选和筛选过程的主观性等问题,提出了改进的BP神经网络模型。选取山西省阳泉市地下水饮用水水源地的10个水质监测指标,进行Pearson相关分析得到相关系数;运用信息指标评价法对模拟因子进行筛选,得到最优的模拟因子,在明确BP神经网络的结构后,把最优模拟因子作为BP神经网络的输入样本,被模拟因子(水质状况综合指数)作为输出样本,建立水质预测模型。结果表明,预测的水质状况综合指数与实际值平均相对误差为3.80%,水质指数平均相对误差为0,较传统的BP神经网络模型精度高。In order to solve the problems of the screening and selection of influencing factors in conventional BP neural network, an improved BP neural network model is proposed. Firstly, ten water quality monitoring indicators of groundwater drinking water sources in Yangquan, Shanxi are selected and the correlation coefficient is obtained by Pearson correlation analysis. Then the information index evaluation method is used to filter the simulation factors and the optimal simulation factors are obtained. Finally, the water quality prediction model is established by taking the optimal simulation factors as the input of BP neural network after determining the structure of BP neural network and the simulated factor ( comprehensive index of water quality) as output sample. The simulation results show that the average relative error of predicted water quality comprehensive index is 3.80% to actual values, and the average relative error of water quality index is zero. The forecasting accuracy is higher than that of traditional BP neural network model.
关 键 词:水质安全预测 Pearson相关分析 信息指标评价法 BP神经网络
分 类 号:X824[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.87