Relative Singularity Categories with Respect to Gorenstein Flat Modules  

Relative Singularity Categories with Respect to Gorenstein Flat Modules

在线阅读下载全文

作  者:Zhen Xing DI Zhong Kui LIU Xiao Xiang ZHANG 

机构地区:[1]Department of Mathematics,Northwest Normal University [2]Department of Mathematics,Southeast University

出  处:《Acta Mathematica Sinica,English Series》2017年第11期1463-1476,共14页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant Nos.11601433 and 11261050);the Postdoctoral Science Foundation of China(Grant No.2106M602945XB);Northwest Normal University(Grant No.NWNU-LKQN-15-12)

摘  要:Let R be a right coherent ring and D^b(R-Mod) the bounded derived category of left R-modules. Denote by D^b(R-Mod)[GF,C] the subcategory of D^b(R-Mod) consisting of all complexes with both finite Gorenstein flat dimension and cotorsion dimension and K^b(F∩C) the bounded homotopy category of flat cotorsion left R-modules. We prove that the quotient triangulated category D^b(R-Mod)[GF,C]/K^b(F∩C,) is triangle-equivalent to the stable category GF∩C of the Frobenius category of all Gorenstein fiat and cotorsion left R-modules.Let R be a right coherent ring and D^b(R-Mod) the bounded derived category of left R-modules. Denote by D^b(R-Mod)[GF,C] the subcategory of D^b(R-Mod) consisting of all complexes with both finite Gorenstein flat dimension and cotorsion dimension and K^b(F∩C) the bounded homotopy category of flat cotorsion left R-modules. We prove that the quotient triangulated category D^b(R-Mod)[GF,C]/K^b(F∩C,) is triangle-equivalent to the stable category GF∩C of the Frobenius category of all Gorenstein fiat and cotorsion left R-modules.

关 键 词:Triangle equivalence Gorenstein flat dimension cotorsion dimension stable category derived category homotopy category 

分 类 号:O153.3[理学—数学] O152.6[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象