检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南师范大学心理学院 [2]华南师范大学心理应用研究中心 [3]广西大学教育学院,南宁530004 [4]华南师范大学广东省心理健康与认知科学重点实验室 [5]广东省心理学会,广州510631 [6]广东财经大学创业教育学院,广州511300
出 处:《心理科学进展》2017年第10期1696-1704,共9页Advances in Psychological Science
基 金:广州市教育科学"十二五"规划2014年度重大课题"基于现代教育测量学的中小学学业质量评价应用研究"(课题编号:1201411413)
摘 要:多阶段混合增长模型(PGMM)可对发展过程中的阶段性及群体异质性特征进行分析,在能力发展、行为发展及干预、临床心理等研究领域应用广泛。PGMM可在结构方程模型和随机系数模型框架下定义,通常使用基于EM算法的极大似然估计和基于马尔科夫链蒙特卡洛模拟的贝叶斯推断两种方法进行参数估计。样本量、测量时间点数、潜在类别距离等因素对模型及参数估计有显著影响。未来应加强PGMM与其它增长模型的比较研究;在相同或不同的模型框架下研究数据特征、类别属性等对参数估计方法的影响。Piecewise growth mixture models (PGMM) can be used to analyze multi-phase longitudinal data with unobserved heterogeneity in a population, and are widely applied in fields such as ability growth, social behaviors development and intervention, and clinical psychology. PGMM can be defined within both the structural equation modeling framework and the random coefficient modeling framework. Maximum likelihood via an expectation-maximization algorithm (EM-ML) and Markov Chain Monte Carlo for Bayesian inference (MCMC-BI) are the most commonly used methods for PGMM parameter estimation. The validity of PGMM and their parameter estimation are significantly affected by factors such as sample size, number of time points, and latent class separation. Future studies should focus on comparisons between PGMM and other growth models, and the influences of factors such as data characters and latent class attributes on the performance of parameter estimation methods under the same modeling framework or different modeling frameworks.
关 键 词:追踪数据 混合增长模型 多阶段混合增长模型 参数估计方法
分 类 号:B841[哲学宗教—基础心理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222