检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗源[1] 张灵[1] 陈云华[1] 朱思豪[1] 田小路[1]
出 处:《计算机应用研究》2017年第11期3514-3517,共4页Application Research of Computers
基 金:广东省交通运输厅科技项目(科技-2016-02-030);广东省自然科学基金博士启动项目(2014A030310169);广东省自然科学基金面上项目(2016A030313703);广东省自然科学基金资助项目(2016A030313713);广东省科技计划资助项目(2016B030305002)
摘 要:针对传统稀疏表示方法构建的字典不具备判别性的问题,以K-SVD算法为基础,对判别字典的构建和分类求解进行了研究,提出一种基于层次结构化字典学习的表情识别方法。先将训练样本切割出眼眉、脸颊和嘴三部分,对分割的各部分利用K-SVD算法得到块字典向量,再用层次分析法的权重赋值方法求块字典向量的权重值,构成各类子字典。将所有的子字典进行联合,用结构化字典学习算法求解。测试样本的归类取决于求解结果重构的效果。在JAFFE和CK表情库上的实验表明,该算法在保证了字典判别性的同时,也达到了较高的识别率。Aiming at the constructed dictionary of traditional sparse representation method with not discrimination enough, this paper researched the construction and classification of discrimination dictionary based on K-SVD algorithm, and proposed a hierarchy structured dictionary learning method. It divided training samples into three parts, which were the eyes and eyebrows together, cheeks and mouth. It used K-SVD algorithm to obtain the block dictionary vectors for the divided three parts. It calculated the weight of block dictionary vectors by the weight assignment of AHP method, and then constructed sub-dictionary of each expression. At last, it combined all the constructed sub-dictionaries and used structured dictionary learning algorithm for solving. The classification of the test samples depended on the effect of the reconstruction. Experimental results show that the proposed method has guaranteed dictionary discrimination and also has a higher recognition rate by using JAFFE andCK database.
关 键 词:结构化字典 K-SVD算法 层次分析法 人脸表情识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143